Lipschitz function

A Lipschitz function is a function ff such that |f(x)f(y)|C|xy||f(x)-f(y)| \leq C |x-y| for all xx and yy (or for all xx and yy in the set if bound), where CC is a constant independent of xx and yy

(Lipschitz continuous)

more general form:

Given two metric spaces (X,dX)(X,d_X) and (Y,dY)(Y,d_Y), where dXd_X denotes the metric on the set XX and dYd_Y is the metric on set YY, a function f:XYf: X → Y is called Lipschitz continuous if there exists a real constant K0K ≥ 0 such that, for all x1x_1 and x2x_2 in XX, dY(f(x1),f(x2))KdX(x1,x2)d_Y(f(x_1),f(x_2)) \leq Kd_X(x_1,x_2)


G-Lipschitz

for all 𝐱\mathbf{x}, ||f(𝐱)||2G||\nabla f(\mathbf{x})||_2 \leq G

(note: norm of gradient, )


Properties:

differentiable at x ⇒ Lipchitz continuous at x ⇒ continuous at x (but the converse is not true)


References:

  1. https://mathworld.wolfram.com/LipschitzFunction.html
  2. https://math.berkeley.edu/~mgu/MA128ASpring2017/MA128ALectureWeek9.pdf
  3. https://en.wikipedia.org/wiki/Lipschitz_continuity
  4. https://users.wpi.edu/~walker/MA500/HANDOUTS/LipschitzContinuity.pdf